Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Aspects Med ; 96: 101256, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38359699

RESUMEN

Well-characterized reference materials support harmonization and accuracy when conducting nucleic acid-based tests (such as qPCR); digital PCR (dPCR) can measure the absolute concentration of a specific nucleic acid sequence in a background of non-target sequences, making it ideal for the characterization of nucleic acid-based reference materials. National Metrology Institutes are increasingly using dPCR to characterize and certify their reference materials, as it offers several advantages over indirect methods, such as UV-spectroscopy. While dPCR is gaining widespread adoption, it requires optimization and has certain limitations and considerations that users should be aware of when characterizing reference materials. This review highlights the technical considerations of dPCR, as well as its role when developing and characterizing nucleic acid-based reference materials.


Asunto(s)
Ácidos Nucleicos , Humanos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
2.
Sci Rep ; 13(1): 14470, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660227

RESUMEN

Lentiviral vectors (LV) have proven to be powerful tools for stable gene delivery in both dividing and non-dividing cells. Approval of these LVs for use in clinical applications has been achieved by improvements in LV design. Critically important characteristics concerning quality control are LV titer quantification and the detection of impurities. However, increasing evidence concerning high variability in titration assays indicates poor harmonization of the methods undertaken to date. In this study, we developed a direct reverse transcription droplet digital PCR (Direct RT-ddPCR) approach without RNA extraction and purification for estimation of LV titer and RNA genome integrity. The RNA genome integrity was assessed by RT-ddPCR assays targeted to four distant regions of the LV genome. Results of the analyses showed that direct RT-ddPCR without RNA extraction and purification performs similarly to RT-ddPCR on purified RNA from 3 different LV samples, in terms of robustness and assay variance. Interestingly, these RNA titer results were comparable to physical titers by p24 antigen ELISA (enzyme-linked immunosorbent assay). Moreover, we confirmed the partial degradation or the incomplete RNA genomes in the prepared 3 LV samples. These results may partially explain the discrepancy of the LV particle titers to functional titers. This work not only demonstrates the feasibility of direct RT-ddPCR in determining LV titers, but also provides a method that can be easily adapted for RNA integrity assessment.


Asunto(s)
ARN , Transcripción Reversa , Bioensayo , Ensayo de Inmunoadsorción Enzimática , Reacción en Cadena de la Polimerasa
3.
Sci Rep ; 13(1): 13206, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580353

RESUMEN

The COVID-19 pandemic illustrated the important role of diagnostic tests, including lateral flow tests (LFTs), in identifying patients and their contacts to slow the spread of infections. INSTAND performed external quality assessments (EQA) for SARS-CoV-2 antigen detection with lyophilized and chemically inactivated cell culture supernatant of SARS-CoV-2 infected Vero cells. A pre-study demonstrated the suitability of the material. Participants reported qualitative and/or quantitative antigen results using either LFTs or automated immunoassays for five EQA samples per survey. 711 data sets were reported for LFT detection in three surveys in 2021. This evaluation focused on the analytical sensitivity of different LFTs and automated immunoassays. The inter-laboratory results showed at least 94% correct results for non-variant of concern (VOC) SARS-CoV-2 antigen detection for viral loads of ≥ 4.75 × 106 copies/mL and SARS-CoV-2 negative samples. Up to 85% had success for a non-VOC viral load of ~ 1.60 × 106 copies/mL. A viral load of ~ 1.42 × 107 copies/mL of the Delta VOC was reported positive in > 96% of results. A high specificity was found with almost 100% negative SARS-CoV-2 antigen results for HCoV 229E and HCoV NL63 positive samples. Quantitative results correlated with increasing SARS-CoV-2 viral load but showed a broad scatter. This study shows promising SARS-CoV-2 antigen test performance of the participating laboratories, but further investigations with the now predominant Omicron VOC are needed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animales , Humanos , Pandemias , Células Vero , COVID-19/diagnóstico , COVID-19/epidemiología , Pruebas Inmunológicas , Sensibilidad y Especificidad
4.
Viruses ; 15(6)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376589

RESUMEN

BACKGROUND: Reactivation of JC and BK polyomaviruses during immunosuppression can lead to adverse clinical outcomes. In renal transplant recipients, BKV-associated nephropathy can result in graft loss, while in patients with autoimmune disorders, prolonged immunomodulatory drug use can cause rare onset of progressive multifocal leukoencephalopathy due to JCV reactivation. In such patients, accurate BK and JC viral load determinations by molecular technologies are important for diagnosis and clinical management; however, comparability across centres requires effective standardisation of diagnostic molecular detection systems. In October 2015, the WHO Expert Committee for Biological Standardisation (ECBS) established the 1st WHO International Standards (ISs) for use as primary-order calibrants for BKV and JCV nucleic acid detection. Two multi-centre collaborative studies confirmed their utility in harmonising agreement across the wide range of BKV and JCV assays, respectively. Previous Illumina-based deep sequence analysis of these standards, however, identified deletions in different regions, including the large T-antigen coding region. Hence, further detailed characterization was warranted. METHODS: Comprehensive sequence characterisation of each preparation using short- and long-read next-generation sequencing technologies was performed with additional corroborative independent digital PCR (dPCR) determinations. Potential error rates associated with long-read sequencing were minimised by applying rolling circle amplification (RCA) protocols for viral DNA (circular dsDNA), generating a full validation of sequence identity and composition and delineating the integrity of full-length BK and JC genomes. RESULTS: The analysed genomes displayed subpopulations frequently characterised by complex gene re-arrangements, duplications and deletions. CONCLUSIONS: Despite the recognition of such polymorphisms using high-resolution sequencing methodologies, the ability of these reference materials to act to enhance assay harmonisation did not appear significantly impacted, based on data generated by the 2015 WHO collaborative studies, but highlights cautionary aspects of IS generation and commutability for clinical molecular diagnostic application.


Asunto(s)
Virus BK , Virus JC , Leucoencefalopatía Multifocal Progresiva , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Humanos , Virus JC/genética , Virus BK/genética , Infecciones por Polyomavirus/diagnóstico , ADN Viral/genética , Organización Mundial de la Salud , Infecciones Tumorales por Virus/diagnóstico
5.
Biologicals ; 82: 101680, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37178559

RESUMEN

In response to the COVID-19 pandemic, the National Institute of Standards and Technology released a synthetic RNA material for SARS-CoV-2 in June 2020. The goal was to rapidly produce a material to support molecular diagnostic testing applications. This material, referred to as Research Grade Test Material 10169, was shipped free of charge to laboratories across the globe to provide a non-hazardous material for assay development and assay calibration. The material consisted of two unique regions of the SARS-CoV-2 genome approximately 4 kb nucleotides in length. The concentration of each synthetic fragment was measured using RT-dPCR methods and confirmed to be compatible with RT-qPCR methods. In this report, the preparation, stability, and limitations of this material are described.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Técnicas de Diagnóstico Molecular/métodos , ARN Viral/genética , Sensibilidad y Especificidad , Prueba de COVID-19
6.
PLoS One ; 17(1): e0262656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051208

RESUMEN

SARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load. Consequently, there was a need to introduce standards to support estimation of SARS-CoV-2 viral load in diagnostic specimens. In a collaborative study, INSTAND established two reference materials (RMs) containing heat-inactivated SARS-CoV-2 with SARS-CoV-2 RNA loads of ~107 copies/mL (RM 1) and ~106 copies/mL (RM 2), respectively. Quantification was performed by RT-qPCR using synthetic SARS-CoV-2 RNA standards and digital PCR. Between November 2020 and February 2021, German laboratories were invited to use the two RMs to anchor their Ct values measured in routine diagnostic specimens, with the Ct values of the two RMs. A total of 305 laboratories in Germany were supplied with RM 1 and RM 2. The laboratories were requested to report their measured Ct values together with details on the PCR method they used to INSTAND. This resultant 1,109 data sets were differentiated by test system and targeted gene region. Our findings demonstrate that an indispensable prerequisite for linking Ct values to SARS-CoV-2 viral loads is that they are treated as being unique to an individual laboratory. For this reason, clinical guidance based on viral loads should not cite Ct values. The RMs described were a suitable tool to determine the specific laboratory Ct for a given viral load. Furthermore, as Ct values can also vary between runs when using the same instrument, such RMs could be used as run controls to ensure reproducibility of the quantitative measurements.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/genética , Carga Viral/métodos , COVID-19/epidemiología , COVID-19/virología , Genes Virales , Alemania/epidemiología , Humanos , Reproducibilidad de los Resultados
7.
Anal Bioanal Chem ; 414(2): 791-806, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738220

RESUMEN

Nucleic acid analysis is used in many areas of life sciences such as medicine, food safety, and environmental monitoring. Accurate, reliable measurements of nucleic acids are crucial for maximum impact, yet users are often unaware of the global metrological infrastructure that exists to support these measurements. In this work, we describe international efforts to improve nucleic acid analysis, with a focus on the Nucleic Acid Analysis Working Group (NAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM). The NAWG is an international group dedicated to improving the global comparability of nucleic acid measurements; its primary focus is to support the development and maintenance of measurement capabilities and the dissemination of measurement services from its members: the National Metrology Institutes (NMIs) and Designated Institutes (DIs). These NMIs and DIs provide DNA and RNA measurement services developed in response to the needs of their stakeholders. The NAWG members have conducted cutting edge work over the last 20 years, demonstrating the ability to support the reliability, comparability, and traceability of nucleic acid measurement results in a variety of sectors.


Asunto(s)
Ácidos Nucleicos/análisis , Ácidos Nucleicos/normas , Estándares de Referencia , Reproducibilidad de los Resultados
8.
Artículo en Inglés | MEDLINE | ID: mdl-34250423

RESUMEN

We report the results from a Foundation for the National Institutes of Health Biomarkers Consortium project to address the absence of well-validated quality control materials (QCMs) for circulating tumor DNA (ctDNA) testing. This absence is considered a cause of variance and inconsistencies in translating ctDNA results into clinical actions. METHODS: In this phase I study, QCMs with 14 clinically relevant mutations representing single nucleotide variants, insertions or deletions (indels), translocations, and copy number variants were sourced from three commercial manufacturers with variant allele frequencies (VAFs) of 5%, 2.5%, 1%, 0.1%, and 0%. Four laboratories tested samples in quadruplicate using two allele-specific droplet digital polymerase chain reaction and three (amplicon and hybrid capture) next-generation sequencing (NGS) panels. RESULTS: The two droplet digital polymerase chain reaction assays reported VAF values very close to the manufacturers' claimed concentrations for all QCMs. NGS assays reported most single nucleotide variants and indels, but not translocations, close to the expected VAF values. Notably, two NGS assays reported lower VAF than expected for all translocations in all QCM mixtures, possibly related to technical challenges detecting these variants. The ability to call ERBB2 copy number amplifications varied across assays. All three QCMs provided valuable insight into assay precision. Each assay across all variant types demonstrated dropouts at 0.1%, suggesting that the QCM can serve for testing of an assay's limit of detection with confidence claims for specific variants. CONCLUSION: These results support the utility of the QCM in testing ctDNA assay analytical performance. However, unique designs and manufacturing methods for the QCM, and variations in a laboratory's testing configuration, may require testing of multiple QCMs to find the best reagents for accurate result interpretation.


Asunto(s)
ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Reacción en Cadena de la Polimerasa , Control de Calidad , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/sangre , Variaciones en el Número de Copia de ADN , Frecuencia de los Genes , Humanos , Mutación/genética , National Institutes of Health (U.S.) , Neoplasias/sangre , Estados Unidos
9.
Genet Med ; 23(9): 1673-1680, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34007000

RESUMEN

PURPOSE: To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions. METHODS: An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)-based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients. RESULTS: In the interlaboratory study, only 2 of 13 challenging variants were detected by all 10 workflows, and just 3 workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests. CONCLUSION: The analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.


Asunto(s)
Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Niño , Variaciones en el Número de Copia de ADN/genética , Humanos , Mutación INDEL/genética , Proyectos Piloto
10.
Anal Bioanal Chem ; 412(28): 7977-7988, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32951064

RESUMEN

Motivated by the current COVID-19 health crisis, we consider data analysis for quantitative polymerase chain-reaction (qPCR) measurements. We derive a theoretical result specifying the conditions under which all qPCR amplification curves (including their plateau phases) are identical up to an affine transformation, i.e. a multiplicative factor and horizontal shift. We use this result to develop a data analysis procedure for determining when an amplification curve exhibits characteristics of a true signal. The main idea behind this approach is to invoke a criterion based on constrained optimization that assesses when a measurement signal can be mapped to a master reference curve. We demonstrate that this approach: (i) can decrease the fluorescence detection threshold by up to a decade; and (ii) simultaneously improve confidence in interpretations of late-cycle amplification curves. Moreover, we demonstrate that the master curve is transferable reference data that can harmonize analyses between different labs and across several years. Application to reverse-transcriptase qPCR measurements of a SARS-CoV-2 RNA construct points to the usefulness of this approach for improving confidence and reducing limits of detection in diagnostic testing of emerging diseases. Graphical Abstract Left: a collection of qPCR amplification curves. Right: Example of data collapse after affine transformation.


Asunto(s)
Algoritmos , Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2
11.
Biologicals ; 64: 76-82, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32094072

RESUMEN

Adventitious virus testing assures product safety by demonstrating the absence of viruses that could be unintentionally introduced during the manufacturing process. The capabilities of next-generation sequencing (NGS) for broad virus detection in biologics have been demonstrated by the detection of known and novel viruses that were previously missed using the recommended routine assays for adventitious agent testing. A meeting was co-organized by the National Institute of Standards and Technology and the U.S. Food and Drug Administration on September 18-19, 2019 in Gaithersburg, Maryland, USA, to facilitate standardization of NGS technologies for applications of adventitious virus testing in biologics. The goal was to assess the currently used standards for virus detection by NGS and their public availability, and to identify additional needs for different types of reference materials and standards (natural and synthetic). The meeting focused on the NGS processes from sample preparation through sequencing but did not thoroughly cover bioinformatics, since this was considered to be the topic of a separate meeting.


Asunto(s)
Productos Biológicos/normas , Contaminación de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Virus/genética , Congresos como Asunto , ADN Viral , Educación , Humanos , Estados Unidos
12.
Clin Chem Lab Med ; 57(8): 1142-1152, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31112502

RESUMEN

Background The National Institute of Standards and Technology (NIST) Reference Material RM 8366 was developed to improve the quality of gene copy measurements of EGFR (epidermal growth factor receptor) and MET (proto-oncogene, receptor tyrosine kinase), important targets for cancer diagnostics and treatment. The reference material is composed of genomic DNA prepared from six human cancer cell lines with different levels of amplification of the target genes. Methods The reference values for the ratios of the EGFR and MET gene copy numbers to the copy numbers of reference genes were measured using digital PCR. The digital PCR measurements were confirmed by two additional laboratories. The samples were also characterized using Next Generation Sequencing (NGS) methods including whole genome sequencing (WGS) at three levels of coverage (approximately 1 ×, 5 × and greater than 30 ×), whole exome sequencing (WES), and two different pan-cancer gene panels. The WES data were analyzed using three different bioinformatic algorithms. Results The certified values (digital PCR) for EGFR and MET were in good agreement (within 20%) with the values obtained from the different NGS methods and algorithms for five of the six components; one component had lower NGS values. Conclusions This study shows that NIST RM 8366 is a valuable reference material to evaluate the performance of assays that assess EGFR and MET gene copy number measurements.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/normas , Proteínas Proto-Oncogénicas c-met/genética , ADN de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/normas , Dosificación de Gen , Humanos , Reacción en Cadena de la Polimerasa , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/normas , Estándares de Referencia , Células Tumorales Cultivadas
13.
J Mol Diagn ; 20(5): 583-590, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29959024

RESUMEN

The National Institute of Standards and Technology has developed reference materials for five human genomes. DNA aliquots are available for purchase, and the data, analyses, and high-confidence small variant and homozygous reference calls are freely available on the web. These reference materials are useful for evaluating whole-genome sequencing methods and also can be used to benchmark targeted sequencing panels, which are used commonly in clinical settings. This article describes how to use the Genome in a Bottle samples to obtain performance metrics on any germline-targeted sequencing panel of interest, as well as the limitations of the reference materials. These materials are useful for understanding the limitations of, and optimizing, targeted sequencing panels and associated bioinformatics pipelines. Example figures are presented to illustrate ways to access the performance metrics of targeted sequencing panels, and a table of best practices is included.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Secuencia de Bases , Femenino , Sitios Genéticos , Humanos , Mutación INDEL/genética , Masculino , Polimorfismo de Nucleótido Simple/genética , Estándares de Referencia
14.
Dev Biol ; 399(1): 41-53, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25523391

RESUMEN

The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, ß-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120(f/f) pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development.


Asunto(s)
Cateninas/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Páncreas/metabolismo , Uniones Adherentes/metabolismo , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Cateninas/genética , Citoesqueleto/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , alfa Catenina/metabolismo , beta Catenina/metabolismo , Catenina delta
15.
Semin Cell Dev Biol ; 23(6): 711-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22743232

RESUMEN

This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.


Asunto(s)
Células Acinares/citología , Morfogénesis , Páncreas Exocrino/embriología , Conductos Pancreáticos/embriología , Células Acinares/metabolismo , Animales , Humanos , Organogénesis , Páncreas/citología , Páncreas/embriología , Páncreas Exocrino/citología , Páncreas Exocrino/metabolismo , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...